CERES Joint Science Team Meeting – The Pattern Effect on Cloud feedback in CERES

Li-Wei Chao, Jacob Muller, Andrew Dessler
Department of Atmospheric Sciences, Texas A&M University

Cloud:

Changes in clouds can amplify or dampen the global warming

ΔR_{cloud} :

- CERES EBAF Ed 4.1
- CRE = All-sky flux
 minus clear-sky flux
- adjusted for cloud masking on non-cloud feedbacks using radiative kernels

△T_{surface}:
- ERA5 reanalysis

Time: 2000/03-2020/12

 $\Delta \lambda = 1.6 \pm 1.1 \text{ W/m}^2/\text{K} (90\%\text{CI})$

 $\Delta \lambda = 1.6 \pm 1.1 \text{ W/m}^2/\text{K} (90\%\text{CI})$

→ Pattern Effect ←

Period 1: 2000/03 – 2010/07 Period 2: 2010/08 – 2020/12

Geophysical Research Letters

⊡ Full Access Research Letter

New Generation of Climate Models Track Recent Unprecedented Changes in Earth's Radiation Budget Observed by CERES

Norman G. Loeb ⋈, Hailan Wang, Richard P. Allan, Timothy Andrews, Kyle Armour, Jason N. S. Cole, Jean-Louis Dufresne, Piers Forster, Andrew Gettelman, Huan Guo, Thorsten Mauritsen, Yi Ming, David Paynter, Cristian Proistosescu, Malte F. Stuecker, Ulrika Willén, Klaus Wyser, ... See fewer authors

First published: 18 February 2020 | https://doi.org/10.1029/2019GL086705

0.6

 $\Delta \lambda = 1.6 \pm 1.1 \text{ W/m}^2/\text{K} (90\%\text{CI})$

→ Pattern Effect ←

Period 1: 2000/03 – 2010/07

Period 2: 2010/08 – 2020/12

Geophysical Research Letters

Research Letter

- Net climate feedback
- 2000-2014 vs. 2000-2017

New Generation of Climate Models Track Recent Unprecedented Changes in Earth's Radiation Budget Observed by CERES

Norman G. Loeb , Hailan Wang, Richard P. Allan, Timothy Andrews, Kyle Armour, Jason N. S. Cole, Jean-Louis Dufresne, Piers Forster, Andrew Gettelman, Huan Guo, Thorsten Mauritsen, Yi Ming, David Paynter, Cristian Proistosescu, Malte F. Stuecker, Ulrika Willén, Klaus Wyser, ... See fewer authors ...

First published: 18 February 2020 | https://doi.org/10.1029/2019GL086705

0.6

26 CMIP6 pre-industrial control runs For each model (~500 years):

 $\Delta \lambda_{\text{cloud SW}} + \Delta \lambda_{\text{cloud LW}}$

$$\Delta \lambda_{\text{cloud SW}} + \Delta \lambda_{\text{cloud LW}}$$

 $\Delta \lambda_{\text{cloud SW}} + \Delta \lambda_{\text{cloud LW}}$

CERES (Period 1: 2000/03-2010/07) $\lambda = -0.45 \pm 0.85 \text{ W/m}^2/\text{K}$

CERES (Period 2: 2010/08-2020/12) $\lambda = +1.2 \pm 0.78 \text{ W/m}^2/\text{K}$

CERES observations vs. CMIP6 models

CERES observations vs. CMIP6 models

CERES observations vs. CMIP6 models

Geophysical Research Letters

New Generation of Climate Models Track Recent Unprecedented Changes in Earth's Radiation Budget Observed by CERES

Norman G. Loeb , Hailan Wang, Richard P. Allan, Timothy Andrews, Kyle Armour, Jason N. S. Cole, Jean-Louis Dufresne, Piers Forster, Andrew Gettelman, Huan Guo, Thorsten Mauritsen, Yi Ming, David Paynter Cristian Proistosescu, Malte F. Stuecker, Ulrika Willén, Klaus Wyser, ... See fewer authors ...

Conclusions

- ✓ Cloud feedbacks are dependent on the surface temperature warming pattern, which is known as pattern effect.
- √ We found a large pattern effect on cloud feedback in CERES data
 - related to the temperature pattern over East Pacific
- √ The CMIP6 models can reproduce the pattern effect with similar magnitude and main features of spatial structure

Supplement

CERES EBAF Ed 4.1: 2000/03-2020/12 (color shading) CMIP6: ensemble mean of 20-yr feedbacks (black lines)

(a) The ensemble-average feedback differences between 2000-year control run and 68 members of 1%CO₂ ensemble. For the control run, the values are averaged cloud feedbacks derived from non-overlapping 20-year segments. For the 1%CO₂ ensemble, the 20-year period that has ensemble averaged warming of 0.8 K is first identified. The values are the ensemble average of 20-year cloud feedbacks from each member. The uncertainty is 90% confidence intervals. (b-d) The spatial pattern of cloud, cloud SW, cloud LW feedback differences between control run and 1%CO₂ ensemble (color) and the feedbacks from control run (black lines).

